Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 251: 121118, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219689

RESUMEN

Fouling is a significant challenge for recycling and reusing saline wastewaters for industrial, agricultural or municipal applications. In this study, we propose a novel approach of magnetic field (MaF) and ultraviolet (UV) combined application for fouling mitigation. Results showed, combination of MaF and UV (MaF-UV) significantly decreased the content of biofouling and reduced the complexity of microbial networks, compared to UV and MaF alone treatments. This was due to MaF as pretreatment effectively reduced the water turbidity, improve the influent water quality of UV disinfection and increases UV transmittance, eliminating the adverse impacts of UV scattering and shielding, hence increased the inactivation effectiveness of UV disinfection process. MaF assisted UV also reduced the abundance of UV-resistant bacteria and inhibited the risk of bacterial photoreactivation and dark repair. Meanwhile, MaF-UV drastically reduced the contents of precipitates and particulate fouling by accelerating the transformation rate of CaCO3 crystal from compact calcite to loosen hydrated amorphous CaCO3, and enhancing the flocculation process. These findings demonstrated that MaF-UV is an effective anti-fouling strategy, and provide insights for sustainable application of saline wastewaters.


Asunto(s)
Aguas Residuales , Purificación del Agua , Rayos Ultravioleta , Bacterias , Desinfección/métodos , Agricultura , Purificación del Agua/métodos
2.
Chemosphere ; 350: 141068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160955

RESUMEN

Aerobic composting is eco-friendly and sustainable practice for kitchen waste (KW) disposal to restore soil fertility and reduce environmental risks. However, KW compact structure, perishable nature, acidification by anaerobic acidogens, inhibits the metabolism of aerobic microbes, insufficient breakdown of organic matters, and prolong the composting duration. This study, co-composted coal fly ash (FA), to regulate bacterial dynamics, co-occurrence patterns and nutrients transformation in KW composting. Our results indicated, FA created suitable environment by increasing pH and temperature, which facilitated the proliferation and reshaping of microbial community. FA fostered the relative abundances of phlya (Proteobacteria, Chloroflexi and Actinobacteriota) and genera (Bacillus, Paenibacillus and Lysinibacillus), which promoted the nutrients transformation (phosphorus and nitrogen) in KW compost. FA enhanced the mutualistic correlations between bacterial communities, promoted the network complexity (nodes & edges) and contains more positive connections, which reflect the FA amendment effects. KW mature compost seed germination index reached >85% of FA treatment, indicated the final products fully met the Chinese national standard for organic fertilizer. These findings might provide opportunity to advance the KW composting and collaborative management of multiple waste to curb the current environmental challenges.


Asunto(s)
Compostaje , Microbiota , Ceniza del Carbón , Carbón Mineral , Bacterias , Suelo
3.
Front Microbiol ; 17: 1218595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637191

RESUMEN

Background: Polygonatum sibiricum is an understory economic plant, and its dried rhizome is a traditional Chinese medicine. The purpose of this study was to connect the quality improvement of the understory plant P. sibiricum with specific microorganisms. Methods: Amplicon and metabolome sequencing were conducted for P. sibiricum interplanted under three types of trees and in the field, and the relationship between the microbiome and secondary metabolism was explored. Results: Principal component analysis (PCA) divided field cultivated and understory interplanted groups into two classes. A total of 95 different metabolites were found, with four expression patterns. The alpha diversity of rhizosphere bacteria and endosphere fungi in the understory interplanted group was significantly higher than that in the farmland cultivated group. There were 276 different rhizosphere microorganism genera among the four groups; however, only 33 different endosphere genera were observed, indicating that endophytic microbial diversity was relatively stable within the P. sibiricum rhizome, especially for endosphere bacteria. Cointertia analysis (CoIA) suggested that the metabolite changes in P. sibiricum induced by interplanting under different trees were more strongly affected by rhizosphere microorganisms than by endosphere microorganisms. In addition, the interactions between rhizosphere microorganisms and metabolites in the farmland group were weakened compared with those in the underplanted groups. Canonical correspondence analysis (CCA) showed that Aspergillus and Ellin6067 had the greatest influence on the metabolites. Myrmecridium, as a shared microbe in the rhizosphere and endosphere, had interaction effects with the largest number of microbes. Conclusion: This study revealed the interactions between the microbes and metabolites in P. sibiricum and systematically explored the mechanism underlying their correlation, which was mediated by the understory interplanting mode. This study provides feasible strategies for improving the medicinal value of P. sibiricum by regulating microorganisms.

4.
Sci Adv ; 9(23): eadg7037, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294751

RESUMEN

We report the direct observation of lattice phonons confined at LaAlO3/SrTiO3 (LAO/STO) interfaces and STO surfaces using the sum-frequency phonon spectroscopy. This interface-specific nonlinear optical technique unveiled phonon modes localized within a few monolayers at the interface, with inherent sensitivity to the coupling between lattice and charge degrees of freedom. Spectral evolution across the insulator-to-metal transition at LAO/STO interface revealed an electronic reconstruction at the subcritical LAO thickness, as well as strong polaronic signatures upon formation of the two-dimensional electron gas. We further discovered a characteristic lattice mode from interfacial oxygen vacancies, enabling us to probe such important structural defects in situ. Our study provides a unique perspective on many-body interactions at the correlated oxide interfaces.


Asunto(s)
Electrónica , Fonones , Análisis Espectral , Electrones , Óxidos
5.
BMC Plant Biol ; 22(1): 163, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365083

RESUMEN

BACKGROUND: The rhizome of Polygonatum kingianum Coll. et Hemsl (P. kingianum) is a crucial traditional Chinese medicine, but severe bud dormancy occurs during early rhizome development. Low temperature is a positive factor affecting dormancy release, whereas the variation in carbohydrates during dormancy release has not been investigated systematically. Therefore, the sugar content, related metabolic pathways and gene co-expression were analysed to elucidate the regulatory mechanism of carbohydrates during dormancy release in the P. kingianum rhizome bud. RESULTS: During dormancy transition, starch and sucrose (Suc) exhibited opposing trends in the P. kingianum rhizome bud, representing a critical indicator of dormancy release. Galactose (Gal) and raffinose (Raf) were increased in content and synthesis. Glucose (Glc), cellulose (Cel), mannose (Man), arabinose (Ara), rhamnose (Rha) and stachyose (Sta) showed various changes, indicating their different roles in breaking rhizome bud dormancy in P. kingianum. At the beginning of dormancy release, Glc metabolism may be dominated by anaerobic oxidation (glycolysis followed by ethanol fermentation). After entering the S3 stage, the tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) were may be more active possibly. In the gene co-expression network comprising carbohydrates and hormones, HYD1 was identified as a hub gene, and numerous interactions centred on STS/SUS were also observed, suggesting the essential role of brassinosteroids (BRs), Raf and Suc in the regulatory network. CONCLUSION: We revealed cold-responsive genes related to carbohydrate metabolism, suggesting regulatory mechanisms of sugar during dormancy release in the P. kingianum rhizome bud. Additionally, gene co-expression analysis revealed possible interactions between sugar and hormone signalling, providing new insight into the dormancy release mechanism in P. kingianum rhizome buds.


Asunto(s)
Polygonatum , Regulación de la Expresión Génica de las Plantas , Humanos , Latencia en las Plantas/genética , Proteínas de Plantas/genética , Polygonatum/genética , Polygonatum/metabolismo , Rizoma/metabolismo , Azúcares
6.
J Hazard Mater ; 401: 123265, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32629347

RESUMEN

Reusing biogas slurry (BS) in agricultural drip irrigation systems may provide a solution to deal with the adverse environmental impacts of applying BS. Biofouling and scaling are two leading issues in drip irrigation emitters. This study investigated a practice that applied electromagnetic fields (EMFs) to control biofilms and scales. The bacterial communities and mineral precipitations in the clogging substances of emitters were determined. Results showed that EMFs inhibited the growth of microbes, and influenced BS physicochemical parameters. Consequently, EMFs shifted the bacterial communities with reduced diversities. Network analyses revealed that bacterial species under EMFs treatments showed lower average connectivities and simpler interactions, which were responsible for the decreases of extracellular polymers substances (EPS). Moreover, EMFs treatments not only reduced the carbonates in emitters, but also prevented the depositions of phosphates, silicates, and quartzes. EMFs also had impacts on the lattice parameters and crystal volumes of carbonates. In addition, the changes in bacterial communities and EPS contents were associated with the reductions of various minerals. Accordingly, EMFs effectively mitigated biofilms and scales with the fixed clogging substances reduced by 29.1-53.8 %. These findings demonstrated that applying EMFs is an effective anti-biofouling and anti-scaling treatment with potential applications in BS irrigation systems.


Asunto(s)
Incrustaciones Biológicas , Riego Agrícola , Biopelículas , Biocombustibles , Campos Electromagnéticos
7.
J Environ Manage ; 263: 110366, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32174520

RESUMEN

Phosphorous (P) fertigation with high salinity water (HSW) drip irrigation would be an effective measure to relieve soil and water pollution caused by the excessive application of P fertilizer, and achieve synergistic saving of both limited fresh water and non-renewable P resources. However, the emitter clogging issues of drip fertigation systems seriously restricts the utilization of this technology. This study proposes an approach to reduce emitter clogging in HSW drip fertigation systems by choosing the appropriate type and concentration of P fertilizer. The effects of two new types of P fertilizers (ammonium polyphosphate, APP; urea phosphate, UP), and a traditional P fertilizer (monopotassium phosphate, MKP), were assessed at three fertilization concentrations (0, 0.15, and 0.30 g/L) on the clogging behavior of four types flat emitters. The results indicated that the application of MKP aggravated the clogging of emitters in comparison with non-fertilization. While the addition of two new types of P fertilizers (APP and UP) effectively alleviated emitters clogging (the irrigation uniformity of systems increased by 26.2%-74.6%) by inhibiting the formation of carbonate, although precipitation of phosphate, silicate, and quartz increased. Moreover, under the equal application amount of P fertilizer, UP and APP were more effective in relieving clogged when applied at a low-concentration with long-term running and high-concentration with short-term running mode. The results could pave a way for reducing the pollution in agricultural production and conserving freshwater and non-renewable P resources.


Asunto(s)
Riego Agrícola , Fertilizantes/análisis , Agricultura , Fosfatos , Salinidad , Suelo
8.
Water Res ; 173: 115562, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32044595

RESUMEN

Biofouling is ubiquitous in reclaimed water distribution systems and causes various industrial, economic, and health issues. This paper investigated the anti-biofouling efficacy of electromagnetic fields (EMFs) for agricultural emitters used for two types of reclaimed water. 16S rRNA gene sequencing and X-ray diffraction were applied to determine the microbial communities and mineral compositions in biofilms. The obtained results revealed that EMF treatment significantly changed the bacterial communities and reduced their diversities in biofilm by affecting water quality parameters. Network analysis results indicated that EMFs were detrimental to the co-occurrence patterns of mutualistic relationships among bacterial species, destroyed the connectivity and complexity of the networks, and inhibited biofilm formation [decreased total biomass and extracellular polymeric substance (EPS) content]. EMF treatment could also decrease the deposition of mineral precipitates, reducing the carbonate and silicate content in biofilm. The decrease of EPS content appeared to reduce biofilm-induced mineral crystallization, while the ion precipitations accelerated by EMFs caused an erosive effect on biofilm. The results demonstrated that EMF treatment is an effective, chemical-free, and anti-biofouling treatment method with great potential for biofouling control in reclaimed water distribution systems.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Biopelículas , Campos Electromagnéticos , Matriz Extracelular de Sustancias Poliméricas , Membranas Artificiales , ARN Ribosómico 16S , Agua
9.
PLoS One ; 11(5): e0154673, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171202

RESUMEN

A suitable planting pattern and irrigation strategy are essential for optimizing winter wheat yield and water use efficiency (WUE). The study aimed to evaluate the impact of planting pattern and irrigation frequency on grain yield and WUE of winter wheat. During the 2013-2014 and 2014-2015 winter wheat growing seasons in the North China Plain, the effects of planting patterns and irrigation frequencies were determined on tiller number, grain yield, and WUE. The two planting patterns tested were wide-precision and conventional-cultivation. Each planting pattern had three irrigation regimes: irrigation (120 mm) at the jointing stage; irrigation (60 mm) at both the jointing and heading stages; and irrigation (40 mm) at the jointing, heading, and milking stages. In our study, tiller number was significantly higher in the wide-precision planting pattern than in the conventional-cultivation planting pattern. Additionally, the highest grain yields and WUE were observed when irrigation was applied at the jointing stage (120 mm) or at the jointing and heading stages (60 mm each) in the wide-precision planting pattern. These results could be attributed to higher tiller numbers as well as reduced water consumption due to reduced irrigation frequency. In both growing seasons, applying 60 mm of water at jointing and heading stages resulted in the highest grain yield among the treatments. Based on our results, for winter wheat production in semi-humid regions, we recommend a wide-precision planting pattern with irrigation (60 mm) at both the jointing and heading stages.


Asunto(s)
Riego Agrícola , Estaciones del Año , Triticum/crecimiento & desarrollo , Triticum/fisiología , Agua/fisiología , Agricultura/métodos , Grano Comestible/crecimiento & desarrollo , Lluvia , Triticum/anatomía & histología
10.
ScientificWorldJournal ; 2014: 180219, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147835

RESUMEN

Demand for food security and the current global warming situation make high and strict demands on the North China Plain for both food production and the inhibition of agricultural carbon emissions. To explore the most effective way to decrease soil CO2 emissions and maintain high grain yield, studies were conducted during the 2012 and 2013 summer maize growing seasons to assess the effects of wheat straw mulching on the soil CO2 emissions and grain yield of summer maize by adding 0 and 0.6 kg m(-2) to fields with plant densities of 100,000, 75,000, and 55,000 plants ha(-1). The study indicated that straw mulching had some positive effects on summer maize grain yield by improving the 1000-kernel weight. Meanwhile, straw mulching effectively controlled the soil respiration rate and cumulative CO2 emission flux, particularly in fields planted at a density of 75,000 plants ha(-1), which achieved maximum grain yield and minimum carbon emission per unit yield. In addition, soil microbial biomass and microbial activity were significantly higher in mulching treatments than in nonmulching treatments. Consequently, summer maize with straw mulching at 75,000 plants ha(-1) is an environmentally friendly option in the North China Plain.


Asunto(s)
Agricultura , Dióxido de Carbono/química , Estaciones del Año , Suelo/química , Zea mays/crecimiento & desarrollo , China
11.
Biores Open Access ; 2(2): 118-27, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23593564

RESUMEN

Hyperhomocysteinemia is considered to be a significant risk factor in atherosclerosis and plays an important role in it. The purpose of this study was to determine the molecular mechanism of blood monocyte chemoattractant protein-1 (MCP-1) promoter DNA hypomethylation in the formation of atherosclerosis induced by hyperhomocysteinemia, and to explore the effect of nuclear factor-κB (NF-κB)/DNA methyltransferase 1 (DNMT1) in this mechanism. The atherosclerotic effect of MCP-1 in apolipoprotein E-deficient (ApoE(-/-)) and wild-type C57BL/6J mice was evaluated using atherosclerotic lesion area; serum NF-κB, MCP-1, and DNMT1 levels; and MCP-1 promoter DNA methylation expression. In vitro, the mechanism responsible for the effect of NF-κB/DNMT1 on foam cells was investigated by measuring NF-κB and DNMT1 levels to determine whether NF-κB/DNMT1 had an effect on gene expression. Compared with the control group, atherosclerotic lesions in ApoE(-/-) mice fed a high methionine diet significantly increased, as did the expression of MCP-1. In vitro study showed that pyrrolidine dithiocarbamate treatment down-regulated levels of NF-κB and raised DNMT1 concentrations, confirming the effect of NF-κB/DNMT1 in the MCP-1 promoter DNA methylation process. In conclusion, our results suggest that through NF-κB/DNMT1, MCP-1 promoter DNA hypomethylation may play a key role in formation of atherosclerosis under hyperhomocysteinemia.

12.
Acta Biochim Biophys Sin (Shanghai) ; 45(5): 391-400, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23619570

RESUMEN

Hyperhomocysteinemia (HHcy) is a risk factor for cardiovascular disease and has a strong correlation with heart failure. However, the effects of HHcy on cardiac tissue remain less well understood. To elucidate the role of p53-dependent apoptosis in HHcy-induced cardiac injury, we fed ApoE(-/-) mice with high methionine diet to establish HHcy model. Serum Hcy, cardiac enzymes, and lipids were measured. The protein levels of Noxa, DNMT1, caspases-3/9, and p53 were determined by enzyme-linked immunosorbent assay. Bcl-2 and Bax proteins were detected by immunohistochemistry staining. S-adenosyl methionine and S-adenosyl homocysteine concentrations were determined by high-performance liquid chromatography. The mRNA levels of p53 and DNMT1 were analyzed by real-time polymerase chain reaction (PCR) and the methylation levels of p53 were analyzed by nested methylation-specific-PCR. Our data showed that the concentrations of serum Hcy and lipids were increased in Meth group compared with the N-control group, which indicated that the model was established successfully. The expression levels of p53 and Noxa were increased in Meth group, while the methylation status of p53 was hypomethylation. The activities of caspase-3/9 were increased in Meth group compared with the N-control group. In addition, immunohistochemistry staining showed that the expression of Bax was significantly increased in Meth and Meth-F group compared with the N-control group. In summary, HHcy induces cardiac injury by up-regulation of p53-dependent pro-apoptotic related genes Noxa and Bax, while p53 DNA hypomethylation is a key molecular mechanism in pathological process induced by HHcy.


Asunto(s)
Apolipoproteínas E/deficiencia , Cardiomiopatías/etiología , Hiperhomocisteinemia/fisiopatología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteína p53 Supresora de Tumor/genética , Proteína X Asociada a bcl-2/biosíntesis , Animales , Cardiomiopatías/fisiopatología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , Metilación de ADN , Masculino , Ratones , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...